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L curvep surraces

The minimisation of the surface area of a liquid Fig. 2. Gih;m dividing plane
suriaces,

mli:y result in the formation of a curved surface as in
a bubble (A bubble is g region in which vapour and

possibly air too is trapped by a thin film). We shall now see that there are tWo conseq,,,
curvature, and hence of the surface tension that are relevant to the_ properties of “"Iuid.q_ 0
that the vapour pressure of a liquid depends on the curvature of its surface. The '

capillary rise or fall of liquid in narrow tubes.

[1] The !-aplace-Young Equation
This equation relates pressure across a surface to the
cunra.ture of the surface. First we will derive it and then
examine some of its applications.
~ For the system in figure (1), the energy of the o phase
1s given by
dE,=TdS,=P,dV,+,dng (1)
and the energy of the B phase by
If we place the Gibbs dividing plane such that the

number of molecules in that plane disappear as shown in
figure (2), the energy of the interface is given by
.. (3)

dE;=TdS,+ydo

To simplify the derivation of Laplace-Young equation,
we have assumed that Ty =T =T, =T. It is not necessary

to do so. At equilibrium,
dE=dE,+dEg+dE;=0
dS=dS,+dSg+dS;=0
From these equations, we get -
—PadVa —PBdVﬁ " padna + updn +yde=0 ...(6)
Since there are no molecules in the interface,
dny =-dng, 50 :

v (4)
.er (5)

and

Ho = Hp . (7

for a material equilibrium between the two phases. The
condition for equilibrium between two phases is not altered
by the presence of an interface between them.

Since the interfacial region has zero volume, we have

qu-“-"dVﬁ - (8)
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Fig. 3. Surface excess concentration.
The amount added to the « phase &g
the amount subtracted from theﬁPh‘;
hence ng =0 (b) The amount added ¥ ”
o. phase is greater than the amos?
subtracted from the f phasei 0
na>0. (c) The amount added ¥ s |
phase is smaller than the ““:M
subtracted from the [ phas

na<0. .
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However, the Variationg in vol

he remaining terms in equat;oy, (6) i:a area g, —
4 1
P, dv, , nget Ndependon of each ther.
On rearrangement, we get B dVB ~Yo=g - Hence grouping
PO‘_PB'*Y(-QQ__ ...(9)
L | v, )
reeand Thomas Yo oRendently g | (10)
Laplace an omas Young (1805) in a dify, ved by Marqui 3
followed above. °rent way from, the o .
e
Across a Sph
(i) Pressure Ac Pherical Surfac i
Let us consider application of the L:pla
a spherical drop [Fig. (4)] For a sphere, ce-Young equation ¢, -
) sS¢

95\ 2 5
(37, =2 ) " Fhase

where . refers to the phase of the drop. Thex;efore
§ Fig. 4. Spherical  grg

P.- . The

| Pressure inside ig greater

Pa _ Pﬁ B g! ' than the pressure outside.

P —p,—2(1x10"2Nm7
T 10,
= 0.3 x 10°Pa = 0.3 bar

where pressure is quite significant. However, when the radius is 1 mm,
the pressure difference falls to 1.4 x 103 bar. For a planar surface |
r=c and the pressure difference across the surface disappears. | =

Equation (12) has to be modified for bubbles. A bubble has two |
surfaces (double the surface area of a drop), therefore Laplace-Young |
equation becomes o e - TR o

, 4y
Py-Ppg=",

The utility of the Léplaée-Young ft?rl:aastaito: gli‘sre :t;fo i ;: )
Spherically symmetric systems. The cury:im re a8 e e
to two radii for any surface, and fqr a mi 3

shown that _. e
| _Q.g— =—+
(éva ), rq Tha

‘ 1 1
0

1 1

—_— -
Pa=Pp+(rau rbu) . .
15). Figure (5)

tion (
qglll:ss tubes, the film ap

For a sphere r, =7
(12). So, the general form

DR
: : lustration 01 ¢
Let us consider an llluioetween the

tubﬁ!s. At certain distance



e O AL, (1

Since the system ig open to the surroundings, the presnurae in the region encloge h

must be equal to the extoernal pressuroe, Therofore, in thin npecinl enno, thaey ?”'h"“)

difference Across a curved surfuce. This result doon not violnto the I.lt[:lricfcu\’¢||1||”ﬁ. g My

soap film 1In fig. (5) has two radii of curvature. Lot ry bo the rindliun in the plang f t‘l':fuuti(,nlﬂum
" Papg, M

rp the radius at the minimum in the hoerizontal plario perpendicular to the paper, 1wy oy 0

origin at the centre of the apparatus, wo will seo that ry, in ponitive and r, iy negatiy, ": !lln f thl
of the soap film is such that these two radii have tho name magnitudo. So, the term i, o, "s:.
in equation (15) disappears, leading to AP = 0. mmm'hﬂnq;

[ CAPILLARY ACTION
The tendency of liquids to r

iso up tho capillory tube (tube of narrow bore) whig, it o
capillary action, is a consequence of surfaco tonsion. Consider what happeng Wher? ledthg‘
tendency to adherg to t % glay,

capillary tube is first immersed in water or any liquid that has a

The energy is lowest when a thin film covers as much of the glass as possible, Ag thig fil ° Wally
ing tho surfuce of the liquid inside the tube Su;)n Creep,
' p

up the inside wall it has the effect of curv LE0 : . "
water level in the tube is shown in fig. (6-0) when it is just immersed in water, " the
Let us examine the pressure at various points in the system. The pressure differencq i

flat surface is zero, and pressure does not change appreciably with height in the gag phag 0.8 i
pressure at all points marked 1 in Fig. (6-n) must be the same. Let this pressure be P, b

Since water wets the glass to some extent, the angle between the liquid surface and g,

ary wall will be less than 90°. So, in accordance with the Laplace-Young equatey

capill ' i
capillary is large, and we may 1gnore th

P, < P, and P3 < P;. (The radius of curvature outside the

pressure difference there). However, the capillary
radius is small, and P, will be appreciably lower
than P;. So, the liquid from the bulk migrates into
the capillary. When equilibrium is attained the
water level in the capillary will be higher than that
in the trough, as shown in Fig. (6-b).

[1] Laplace Equation

The Laplace-Young equation allows us to relate
the height of the liquid column in the capillary to
surface tension. The pressure difference across the

meniscus is given by

d w4 b]‘l
AP:P]. 4' "-.‘.\
where r is the radius of the meniscus, Eat OnTmS .I ?7
equation shows that the difference in p _ curvattf®
becomes infinite (when the surface is fl 2 '(e-ﬁ)ﬂ‘*;

Since the pressure difference acros
AP =Py

where p is the density, g is the accelera
as shown in Fig. (6-b). From equations
ety
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ADSORPTION ' 481

— _Teas

_Since t he radius of the capillary is easily measured, it is more convenient to relate surface
tension to it than to the radius of curvature. Hence, equation (3) can be expressed as,

y=DEhR_ . (@)

Problem1: Ty what heigh does water r.
of water is 997 kg m™3 Assume that the con
Solution :  Since cog 0=1, we have, fro

ise at 25°C in a capillary tube of 1.00 mm diameter? The density
tact angle is zero.
m equation (3),

R 2
psr

B 2(7.28 x 10 Jym™?)
(997 kg m™) (9.8 ms™?) (5 x 10*m)
=2.98 cm

Solution :  Just before the drop falls, the surface tension holding it up equals the force of
gravity pulling it down. (Fig. 7). So, :

2nRy =4 1 pg | et
where r, is the radius of the drop. Rearranging this equation, we have o A :
% 7 o 3k A
= (@)m | (@ Fig 7. Relation
¢ 20 ~ between the size
On substituting the appropriate values for the quantities in the above equation a:;d}g;.,golymg, 'itﬁei o suntasas
we get, b e

ry=1.79 mm A S h
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